Prediction Intervals: Using Sample Data to Predict

1. Setting the Stage

- a. We have an iid random sample $\{Y_1, Y_2, \dots, Y_n\}$ from the distribution of Y. Y has unknown mean μ , and unknown variance, σ^2 .
- b. Previously, we have focused on estimating μ , the unknown mean of the distribution. And for that purpose, we gravitated towards the sample mean,

 $\overline{Y} = \frac{1}{n} \sum Y_i$, because it is a Best Linear Unbiased Estimator (*BLUE*) of the

population mean (which is to say that it has minimum variance in the class of linear unbiased estimators).

2. Predicting Y_{n+1} (the next sampled value)

- a. As before we will focus on linear estimators, and search for the BLUE estimator, which has minimum variance in the class of linear unbiased estimators: $W = \beta_0 + \beta_1 Y_1 + \beta_2 Y_2 + ... + \beta_n Y_n$
- b. This estimator will be unbiased if the expected residual is 0, or $E(W Y_{n+1}) = 0$. Since the expected residual is $E(W - Y_{n+1}) = \beta_0 + \mu \sum \beta_i - \mu = \beta_0 + \mu (\sum \beta_i - 1)$,

for W to always be unbiased we must have: $\beta_0 = 0$ and $\sum_{i=1}^n \beta_i = 1$.

c. So if we only consider the set (or class) of linear unbiased estimators, we are considering only estimators of the form:

$$W = \beta_1 Y_1 + \beta_2 Y_2 + ... + \beta_n Y_n$$
, where $\sum_{i=1}^n \beta_i = 1$.

(This should sound familiar.)

- d. Since Y_i 's (i = 1, ..., n + 1) are pairwise independent, the $\beta_i Y_i$'s are pairwise independent and the variance of the sum is the sum of the variances. And so, $Var(W Y_{n+1}) = \beta_1^2 Var(Y_1) + \beta_2^2 Var(Y_2) + ... + \beta_n^2 Var(Y_n) + Var(Y_{n+1})$. This is $\sigma^2 \sum \beta_i^2 + \sigma^2 = \sigma^2 \left(\sum \beta_i^2 + 1 \right)$, since $Var(Y_i) = \sigma^2$ for each i.
- e. This sets up the optimization problem:

min
$$Var(W - Y_{n+1}) = \sigma^2 \left(\sum \beta_i^2 + 1\right)$$
 subject to $\sum_{i=1}^n \beta_i = 1$.

- f. But we know from before that the solution is $\beta_i^* = \frac{1}{n}$ for all i... and so W is just the Sample Mean: $W = \overline{Y} = \frac{1}{n} \sum Y_i$.
- g. Accordingly, the sample mean is not just a BLUE estimator of the population mean. It is as well a BLUE estimator of the next sampled value from the distribution.

3. Inference: Prediction Intervals

- a. As usual, we'll assume that Y is Normally distributed: $Y \sim N(\mu, \sigma^2)$. Since the Y_i 's (i = 1, ..., n + 1) are independent, $\overline{Y} \sim N(\mu, \frac{\sigma^2}{n})$ and $Y_{n+1} \sim N(\mu, \sigma^2)$. And so $\overline{Y} Y_{n+1}$ is normally distributed: $\overline{Y} Y_{n+1} \sim N(0, \frac{\sigma^2}{n} + \sigma^2)$.
- b. Put differently: $\frac{Y Y_{n+1}}{\sigma \sqrt{(1+1/n)}} \sim N(0,1)$.
- c. Since we don't know the variance σ^2 , we'll estimate it using the Sample Variance: $S_{YY} = \frac{\sum (Y_i \overline{Y})^2}{n-1}$.
- d. As usual, we can use $S_{Y} = \sqrt{S_{YY}}$ to estimate σ , and given the assumptions above, we have a t distribution with n-1 degrees of freedom: $\frac{\overline{Y} - Y_{n+1}}{S_{Y}\sqrt{(1+1/n)}} \sim t_{n-1}$.
- e. Consider a critical value *c* defined by $\operatorname{Prob}(-c < t_{n-1} < c) = .95$. Then we have $\overline{Y} - Y$

Prob
$$(-c < \frac{Y - Y_{n+1}}{S_Y \sqrt{(1+1/n)}} < c) = .95$$

- f. Or put differently, $\operatorname{Prob}(\overline{Y} cS_Y \sqrt{(1+1/n)} < Y_{n+1} < \overline{Y} + cS_Y \sqrt{(1+1/n)}) = .95$.
- g. And so the 95% *Prediction Interval* $\left[\overline{Y} \pm cS_Y \sqrt{(1+1/n)}\right]$ has the property that 95% of the time, intervals formed in this fashion will contain the (to be) sampled value of Y_{n+1} .

4. Prediction Intervals v. Confidence Intervals

- a. There is a close similarity between:
 - i. *Confidence Intervals* for the unknown mean $\mu : \left[\overline{Y} \pm cS_Y \sqrt{1/n} \right]$
 - ii. Prediction Intervals for the unknown value of Y_{n+1} : $\left[\overline{Y} \pm cS_Y \sqrt{(1+1/n)}\right]$
- b. Both are centered around the sample mean \overline{Y} , but the prediction interval has a larger standard error. Both use the t_{n-1} distribution.
 - i. The standard error for the prediction interval reflects the uncertainty in estimating the mean, captured by the $\sqrt{1/n}$ term, as well as the variance in *Y* itself (which is estimated using the sample variance S_{YY}).